Ir ao conteúdo
  • Cadastre-se

Como Conversores Analógico/Digital Funcionam


     415.508 visualizações    Áudio    15 comentários
Como Conversores Analógico/Digital Funcionam

Taxa de Amostragem

Para nossas explicações, considere o sinal analógico mostrado na Figura 1. Vamos assumir que este é um sinal de áudio, já que esta aplicação é a mais comum para conversões analógico/digital e digital/analógico. O eixo “x” representa a tensão enquanto que o eixo “y” representa o tempo.

Como Conversores Analógico/Digital Funcionam
Figura 1: Um sinal analógico.

O que o conversor analógico/digital faz é capturar amostras do sinal analógico ao longo do tempo. Cada amostra será convertida em um número, levando em consideração seu nível de tensão. Na Figura 2 você ver um exemplo de alguns pontos de amostragem em nosso sinal analógico.

Como Conversores Analógico/Digital Funcionam
Figura 2: Pontos de amostragem.

A freqüência com que a amostragem irá ocorrer é chamada de taxa de amostragem. Se uma taxa de amostragem de 22.050 Hz for usada, por exemplo, isto significa que em um segundo 22.050 pontos serão capturados (ou “sampleados”). A distância de cada ponto capturado será de 1 / 22.050 segundo (45,35 µs, neste caso). Se a taxa de amostragem for de 44.100 Hz, isto significa que 44.100 pontos serão capturados por segundo. Neste caso a distância de cada ponto será de 1 / 44.100 segundo ou 22,675 µs, e assim por diante.

Durante a conversão digital/analógico os números são convertidos de volta em tensões. Se você parar para pensar sobre isso, verá que a forma de onda resultante da conversão digital/analógico não será perfeita, já que ela não terá todos os pontos do sinal analógico original, apenas alguns deles. Em outras palavras, o conversor digital/analógico conectará todos os pontos capturados pelo conversor analógico/digital e qualquer valor que existia originalmente entre esses pontos será descartado.

Você pode ver um exemplo na Figura 3, onde mostramos como o sinal ficaria após ser convertido para digital e de volta para analógico. Como você pode ver, a forma de onda original é mais “arredondada”.

Como Conversores Analógico/Digital Funcionam
Figura 3: Sinal após ter sido convertido para digital e de volta para analógico.

Portanto, quanto maior o número de pontos capturados, isto é, quanto maior a taxa de amostragem, mais perfeito será o sinal analógico produzido pelo conversor digital/analógico. No entanto, quanto mais pontos capturados, mais espaço em disco é necessário para armazenar o dado digital resultante. Por exemplo, uma conversão analógico/digital usando uma taxa de amostragem de 44.100 Hz gerará duas vezes o número de dados que uma conversão usando uma taxa de amostragem de 22.050 Hz, já que a captura será duas vezes maior a partir da forma de onda original.

Se você usar uma taxa de amostragem baixa a forma de onda gerada pelo conversor digital/analógico será muito diferente do sinal analógico original. Se este sinal analógico for uma música, por exemplo, a música terá baixa qualidade.

Portanto, temos um dilema: se a taxa de amostragem for muito alta a qualidade da saída será muito próxima da perfeição, mas em contrapartida precisaremos de muito espaço em disco para armazenar o dado gerado (o arquivo gerado será muito grande); mas se a taxa de amostragem for baixa a qualidade da saída será muito ruim.

Portanto, como saber qual é a melhor taxa de amostragem a ser usada nas conversões analógico/digital para ter uma melhor relação entre armazenamento/qualidade? A resposta é o teorema de Nyquist.

Este teorema define que a taxa de amostragem nas conversões analógico/digital deve ser no mínimo duas vezes o valor da freqüência máxima que se deseja capturar.

Como o ouvido humano é capaz de escutar sons com freqüências de até 20 kHz precisamos usar uma taxa de amostragem de pelo menos 40.000 Hz (40 kHz) para convertermos música com qualidade. Na verdade, o aparelho de CD usa uma taxa de amostragem de 44.100 Hz, capturando assim mais do que os nossos ouvidos conseguem escutar (este valor foi determinado pela Phillips e pela Sony quando eles criaram o CD). Algumas aplicações de áudio profissionais usam uma taxa de amostragem ainda maior.

O sistema telefônico, por outro lado, foi criado para transmitir apenas voz humana, que opera em freqüências mais baixas, de até 4 kHz. Portanto uma taxa de amostragem de 8.000 Hz (8 kHz) é usada na parte digital do sistema telefônico. Isto explica o porque se você tentar transmitir uma música pelo telefone a qualidade é baixa: o circuito do telefone cancela todas as freqüências acima de 4 kHz (peça a um amigo para colocar o telefone perto de um aparelho de som enquanto ele estiver tocando e você entenderá o que estamos falando).

  • Curtir 1

Artigos similares


Comentários de usuários

Respostas recomendadas

Na atualização desse artigo, de 08/12/2006, encontra-se um erro referente à explicação dos gráficos na página 2.

Para nossas explicações, considere o sinal analógico mostrado na Figura 1. Vamos assumir que este é um sinal de áudio, já que esta aplicação é a mais comum para conversões analógico/digital e digital/analógico. O eixo “x” representa a tensão enquanto que o eixo “y” representa o tempo.

Na verdade, o eixo "y" representa a tensão enquanto que o eixo “x” representa o tempo.

Link para o comentário
Compartilhar em outros sites

Noosa!

Excelente artigo!

Me lembrou perfeitamente da minha segunda aula de Sistemas de Programação I que tive!

Se a aula não tivesse sido há 4 meses, poderia jurar que o professor usou o artigo como base para a aula!

Link para o comentário
Compartilhar em outros sites

Muito bom artigo, dá para entender melhor a lógica usada nestes sistemas moduladores de sinal.

Tenho um comentário para o amigo leandrolnh:

Na atualização desse artigo, de 08/12/2006, encontra-se um erro referente à explicação dos gráficos na página 2.

Na verdade, o eixo "y" representa a tensão enquanto que o eixo “x” representa o tempo.

Pois é, isso pode confundir um pouco, mas não é propriamente um erro, apenas por convenção é considerado o eixo horizontal como o eixo X e o eixo vertical como o eixo Y. Se você reparar bem, não erro nas interpretações sobre os eixos X e Y que o Cassio Lima e o Gabriel Torres fazem sobre o gráfico.

Se não me engano o pessoal do sul do Brasil tem um jeito de escrever as notações diferentes do usual em relação ao resto do Brasil sobre os eixos X e Y ou mais eixos (tenho um professor de SC que escreve assim).

Se tiver alguém de SC ou RS, me diga se isso acontece ou não nas escolas e ou faculdades.

Link para o comentário
Compartilhar em outros sites

Sr Gabriel preciso tirar uma duvida referente a conversores ADC/DAC

no trecho

"Informações digitais não são apenas restritas aos computadores. Quando você fala ao telefone, por exemplo, sua voz é convertida em um sinal digital (esta conversão pode ser feita na central da operadora de telefonia, caso sua linha seja analógica, ou na sua casa, caso você esteja usando uma linha ISDN ou DSL), já que sua voz é um sinal analógico e a comunicação entre as comutadoras de telefonia é feita digitalmente."

No caso DSL me parece haver um erro, pois acho que não ha conversão analogico digital da voz na minha casa ,pois o canal telefonico continua separado do canal de dados, tanto é que usamos um filtro de linha que vai conectado ao aparelho telefonico e também quando desligamos o computador o modem DSL também é desligado como poderia haver tal conversão? Os dados saem do modem DLS de forma digital e vão até o DSLAM na central enquanto a voz sai do aparelho de forma análogica e somente é transformada em digital nos circuitos ADC da central de comutação.

Poderia sim haver conversão analogico digital caso eu estivesse usando voz sobre IP,onde ai sim a voz se

transformaria em dados no meu computador que seria passado ao modem DSL que a transmitira de forma digital.

Espero ansioso pela resposta .

post-148540-13884942494493_thumb.gif

Link para o comentário
Compartilhar em outros sites

Onde encontro uma descrição mais detalhada do conversor AD do tipo SAR? Imagino que o tal de Controle possa estar composto de um registrador de deslocamento e portas AND e que a própria unidade SAR possa estar formada por um latch e um registro de deslocamento, bem como o tal de Buffer por um latch.

Agradeço desde já a resposta, já que a implementação circuital detalhada possa contribuir em muito para a melhor compreensão do assunto!

No caso do conversor A/D por inclinação única faltou dizer uma coisa muito importante qual seja que a constante de tempo RC deve ser igual ao período do clock multiplicado por 2^n - 1, onde n é a quantidade de bits com que se quer codificar a amostra. Outra coisa importante a comentar seria a velocidade que precisa ter o clock para amostrar um sinal com máximo conteúdo harmônico de X KHz.

Abraço

Link para o comentário
Compartilhar em outros sites

Também, no caso do conversor A/D por dupla inclinação, deveria ser dito que o tempo T1 fixo para carga do capacitor com a chave analógica comutada para Vin deve ser 2^n - 1 multiplicado pelo período do clock. Desta feita, também, os valores dos componentes do conjunto RC podem ser escolhidos com maior flexibilidade.

Link para o comentário
Compartilhar em outros sites

Mais uma observação com relação ao artigo em referência.

Na página 9 onde se trata do conversor Sigma-Delta, no segundo parágrafo após a figura 14, onde diz:

A saída do flip-flop é usada para realimentar o circuito através de um conversor D/A de um bit. Este conversor D/A de um bit converterá basicamente o “0” ou o “1” armazenado no flip-flop em uma tensão de referência positiva ou negativa para ser somado na saída de um integrador somador,

corrigir para : a entrada de um integrador somador. (Ver no original em Inglês em: http://www.hardwaresecrets.com/article/How-Analog-to-Digital-Converter-ADC-Works/317/9)

Outrossim, recomendo a leitura do artigo: Delta-sigma modulation na Wikipedia em: http://en.wikipedia.org/wiki/Delta-sigma_modulation

para maiores esclarecimentos.

Abraço a todos

Link para o comentário
Compartilhar em outros sites

  • Administrador
Mais uma observação com relação ao artigo em referência.

Na página 9 onde se trata do conversor Sigma-Delta, no segundo parágrafo após a figura 14, onde diz:

A saída do flip-flop é usada para realimentar o circuito através de um conversor D/A de um bit. Este conversor D/A de um bit converterá basicamente o “0” ou o “1” armazenado no flip-flop em uma tensão de referência positiva ou negativa para ser somado na saída de um integrador somador,

corrigir para : a entrada de um integrador somador. (Ver no original em Inglês em: http://www.hardwaresecrets.com/article/How-Analog-to-Digital-Converter-ADC-Works/317/9)

Outrossim, recomendo a leitura do artigo: Delta-sigma modulation na Wikipedia em: http://en.wikipedia.org/wiki/Delta-sigma_modulation

para maiores esclarecimentos.

Abraço a todos

Obrigado, corrigido! :)

Link para o comentário
Compartilhar em outros sites



Crie uma conta ou entre para comentar

Você precisa ser um usuário para fazer um comentário

Criar uma conta

Crie uma nova conta em nossa comunidade. É fácil!

Crie uma nova conta

Entrar

Já tem uma conta? Faça o login.

Entrar agora

Sobre o Clube do Hardware

No ar desde 1996, o Clube do Hardware é uma das maiores, mais antigas e mais respeitadas comunidades sobre tecnologia do Brasil. Leia mais

Direitos autorais

Não permitimos a cópia ou reprodução do conteúdo do nosso site, fórum, newsletters e redes sociais, mesmo citando-se a fonte. Leia mais

×
×
  • Criar novo...