Complexidade de algoritmos e otimização Prof. João B. Oliveira

Os conjuntos felizes

Usando o conjunto de números inteiros $S = \{1, 2, 3, 4, 5, \dots, 10000\}$, pode-se selecionar vários subconjuntos que contém elementos pertencentes a S. Alguns destes subconjuntos são:

$$C_1 = \{5, 1357, 1358, 6, 1359\}$$

 $C_2 = \{3, 5, 7, 876, 4\}$
 $C_3 = \{86, 88, 541, 542, 87, 89\}$

Um conjunto C contendo elementos de S é um conjunto **feliz** se valerem as seguintes regras:

- O conjunto C tem exatamente cinco elementos.
- Cada elemento x que está em C também tem pelo menos um de seus vizinhos (x − 1 ou x + 1) em C.

Seguindo esta regra, os conjuntos C_2 e C_3 mostrados acima não são conjuntos felizes, mas C_1 é um conjunto feliz. De posse destas informações, as perguntas que você deve responder são as seguintes:

Fácil: apresente um algoritmo eficiente para determinar o número de conjuntos felizes que podem ser construídos com elementos de S. Determine este número.

Médio: obtenha uma regra genérica¹ para o número de conjuntos. Ou seja, supondo que o conjunto S deixa de ter 10000 elementos e agora tem n elementos, quantos conjuntos felizes poderão ser gerados? Você deve provar a regra obtida.

Importante: tente adaptar a regra que você descobriu para o caso de cinco elementos, cobrindo o caso genérico de mais (ou menos!) elementos.

Decisivo: preencher a seguinte tabela:

S tem	200 elementos	500 elementos	1000 elementos	2000 elementos
C tem				
6 elementos				
8 elementos				
11 elementos				
14 elementos				

Entregue seus resultados na forma de um artigo² relatando o método de solução usado, as eventuais dificuldades encontradas, a solução achada, o tempo usado para execução do algoritmo e tudo o mais que você achar interessante, exceto o código fonte. Um modelo de relatório está na página da disciplina de Algoritmos III, em http://www.inf.pucrs.br/~oliveira.

¹ou fórmula, expressão analítica, etc.

²Para usuários LyX, sugere-se o formato seminário, usado para seminários de andamento.