

Resolução
O valor de cada ponto capturado será armazenado em uma variável de comprimento fixo. Se esta variável for de oito bits, isto significa que ela poderá armazenar valores entre 0 e 255 (2^8= 256). Se esta variável for de 16 bits, isto significa que ela poderá armazenar valores entre 0 e 65.535 (2^16 = 65.536). E assim por diante.
Portanto, se você está usando um conversor analógico/digital de 8 bits o menor valor será zero e o maior valor será 255. Se um conversor analógico/digital de 16 bits for usado, o menor valor será zero e o maior valor será 65.535. Veja na Figura 4.
Figura 4: Comparação entre as resoluções de 8 e 16 bits.
O que o conversor A/D faz é dividir o eixo “y” em “n” partes possíveis entre os valores máximos e mínimos do sinal analógico original. Este “n” é dada pelo tamanho da variável. Se a variável for muito pequena o que acontecerá é que dois pontos capturados próximos um do outro terão a mesma representação digital, o que não corresponde exatamente ao valor encontrado no sinal analógico original, fazendo com que a forma de onda analógica disponível na saída do conversor D/A não tenha a melhor qualidade.
Mais uma vez, quanto maior for o tamanho da variável, melhor a qualidade, apesar de mais espaço em disco ser necessário. Com a utilização de uma variável de 16 bits são necessários duas vezes mais espaços em disco do que seria necessário se uma variável de 8 bits fosse usada, mas a qualidade seria muito melhor.
Uma das formas de saber o número de bits necessários para um conversor A/D é calcular o nível de ruído desejável. Como os valores capturados do sinal analógico original precisarão ser "arredondados" para o valor digital equivalente mais próximo, isto resulta no que chamamos de ruído de quantização. O nível de ruído tolerável depende da aplicação. O sistema telefônico pode ter um nível de ruído maior do que um aparelho de CD, por exemplo, já que queremos ouvir nossos CDs com a melhor qualidade possível.
A relação sinal/ruído (SNR, Signal-to-Noise Ratio), que mede o nível de ruído, pode ser facilmente calculada através desta fórmula, onde n é o número de bits usado no conversor A/D:
SNR = 6,02 x n + 1,76 dB
Quanto maior a relação sinal/ruído (SNR), melhor. Um conversor A/D de 8 bits fornece uma relação sinal/ruído de 49,8 dB, enquanto que a relação sinal/ruído de um conversor de 16 bits é de 98 dB (que é, a propósito, um valor praticamente sem ruído).
Aparelhos de CDs utilizam uma resolução de 16 bits, enquanto que o sistema telefônico utiliza uma resolução de 8 bits. Aplicações de áudio profissional utilizam resolução de 20 bits ou até mesmo 24 bits.
Em resumo, enquanto a taxa de amostragem nos dá a resolução analógico/digital do eixo “x”, o tamanho da variável nos dá a resolução do eixo “y”.
Conhecendo a taxa de amostragem e o tamanho da variável (também conhecida como resolução) você pode facilmente calcular o espaço em disco (ou a largura de banda, no caso de transmissão de áudio) que será necessário para armazenar o dado gerado pelo conversor A/D.
O sistema telefônico, por exemplo, utiliza uma taxa de amostragem de 8.000 Hz e cada amostra é armazenada em uma variável de oito bits. Portanto, a taxa de transmissão de uma conversão analógico/digital é de 64.000 bits por segundo (8.000 x 8) ou 64 Kbps (valor arredondado, já que 1 K = 1.024; assim 64 Kbps seria 65.536 bps e não 64.000). Se você deseja gravar uma conversa telefônica, o espaço em disco necessário seria de 8.000 bytes por segundo (64.000 / 8) ou 480.000 bytes por minuto (8.000 x 60), isto é, 468,75 KB por minuto.
O CD utiliza uma taxa de amostragem de 44.100 Hz e cada amostra é armazenada em uma variável de 16 bits. Além disso, o CD tem dois canais independentes (esquerdo e direito; o que é tocado em um canal pode ser completamente diferente do que é tocado em outro). Portanto, a taxa de transmissão da conversão analógico/digital do aparelho de CD é de 1.411,200 bps (44.100 x 16 x 2) ou 1,41 Mbit/s (mais uma vez arredondamos o valor, já que 1 M = 1.048.576). O espaço em disco necessário é de 176.400 bytes por segundo (1.411.200 / 8) ou 10.584.000 bytes por minuto (176,400 x 60), isto é, 10 MB por minuto.
Como cada CD pode armazenar até 74 minutos de música, isto significa que um CD pode armazenar 740 MB de informação de música (74 minutos x 10 MB por minuto). Em um aparelho de CD-ROM um CD pode armazenar um pouco menos, 650 MB, porque parte do seu espaço é usada para o armazenamento do código de correção de erro (ECC).
O dado “puro” obtido da conversão analógico/digital é conhecido como PCM, Modulação por Código de Pulso (Pulse Code Modulation). O PCM é também referenciado como “áudio digital sem compactação”. CDs utilizam áudio PCM, como explicamos até agora. Os DVDs, no entanto, podem usar áudio PCM como uma opção, mas podem também usar áudio compactado – que é nosso próximo assunto.
-
1
Respostas recomendadas
Crie uma conta ou entre para comentar
Você precisa ser um usuário para fazer um comentário
Criar uma conta
Crie uma nova conta em nossa comunidade. É fácil!
Crie uma nova contaEntrar
Já tem uma conta? Faça o login.
Entrar agora